Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.04.521629

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and its subvariants (BA.2, BA.4, BA.5) represent the most commonly circulating variants of concern (VOC) in the coronavirus disease 2019 (COVID-19) pandemic in 2022. Despite high vaccination rates with approved SARS-CoV-2 vaccines encoding the ancestral spike (S) protein, these Omicron subvariants have collectively resulted in increased viral transmission and disease incidence. This necessitates the development and characterization of vaccines incorporating later emerging S proteins to enhance protection against VOC. In this context, bivalent vaccine formulations may induce broad protection against VOC and potential future SARS CoV 2 variants. Here, we report preclinical data for a lipid nanoparticle (LNP) formulated RNActive N1-methylpseudouridine (N1m{Psi}) modified mRNA vaccine (CV0501) based on our second-generation SARS-CoV-2 vaccine CV2CoV, encoding the S protein of Omicron BA.1. The immunogenicity of CV0501, alone or in combination with a corresponding vaccine encoding the ancestral S protein (ancestral N1m{Psi}), was first measured in dose-response and booster immunization studies performed in Wistar rats. Both monovalent CV0501 and bivalent CV0501/ancestral N1m{Psi} immunization induced robust neutralizing antibody titers against the BA.1, BA.2 and BA.5 Omicron subvariants, in addition to other SARS-CoV-2 variants in a booster immunization study. The protective efficacy of monovalent CV0501 against live SARS-CoV-2 BA.2 infection was then assessed in hamsters. Monovalent CV0501 significantly reduced SARS CoV 2 BA.2 viral loads in the airways, demonstrating protection induced by CV0501 vaccination. CV0501 has now advanced into human Phase 1 clinical trials (ClinicalTrials.gov Identifier: NCT05477186).


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.20.485440

ABSTRACT

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS CoV-2 variants could improve COVID-19 control. We compared monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S protein, primarily in a transgenic mouse model and a Wistar rat model. The low-dose bivalent mRNA vaccine contained half the mRNA of each respective monovalent vaccine, but induced comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, specific CD4+ and CD8+ responses, and fully protected transgenic mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduced viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized Wistar rats also contained neutralizing antibodies against the B.1.1.529 (Omicron BA.1) variant. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins is a feasible approach for increasing the potency of vaccines against emerging and co-circulating SARS-CoV-2 variants.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.435960

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines as the primary control option. Recently, viral mutants termed "variants of concern" (VOC) have emerged with the potential to escape host immunity. VOC B.1.351 was first discovered in South Africa in late 2020, and causes global concern due to poor neutralization with propensity to evade preexisting immunity from ancestral strains. We tested the efficacy of a spike encoding mRNA vaccine (CVnCoV) against the ancestral strain BavPat1 and the novel VOC B.1.351 in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice developed elevated SARS-CoV-2 RBD-specific antibody as well as neutralization titers against the ancestral strain BavPat1. Neutralization titers against VOC B.1.351 were readily detectable but significantly reduced compared to BavPat1. VOC B.1.351-infected control animals experienced a delayed course of disease, yet nearly all SARS-CoV-2 challenged naive mice succumbed with virus dissemination and high viral loads. CVnCoV vaccine completely protected the animals from disease and mortality caused by either viral strain. Moreover, SARS-CoV-2 was not detected in oral swabs, lung, or brain in these groups. Only partial protection was observed in mice receiving the formalin-inactivated virus preparation. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV shows complete disease protection against the novel VOC B.1.351 in our studies.

SELECTION OF CITATIONS
SEARCH DETAIL